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1. Introduction

It is a well known fact that, if a weight n is good a.e. for all operators induced by
measure preserving transformations (MPTs), then it is also good a.e. for any Dunford-
Schwartz operator (i.e. L; — Ly-contraction) [BO]. Similar results have been obtained
in various other settings [JO, JOW, CLO]. When T is an L;-contraction induced by a
MPT, various types of sequences, such as Z, block sequences [BL], sequences satisfying
cone condition [BL, RW], sequence of squares and sequence of primes [RW] are good in
the mean for T'. Recently, it was proved in [F] that, sequences satisfying cone condition
are good a.e. and in the mean for the class of bounded superadditive processes relative to
MPTs.

In this article, our aim is to show that sequences which are good in the mean for
invertible MPTs are also good in the mean for T-(super)additive processes relative to

positive L,-contractions (when 1 < p < 00), or positive Dunford-Schwartz operators on
L.

Let (X, X, i) be a finite measure space, T': L,(X) — L,(X) be a positive linear
contraction, 1 < p < oo is fixed. In order to avoid certain difficulties we will assume that
(X, %, i) is a Lebesgue space. A strictly increasing sequence n = {n} of integers is called
good in the p-mean for T if, for every f € L,, limy_ o % Zf\:)l Tm f exists in the
L,-norm . If 7 is a measurable transformation on X, we say that n is good in the p-mean
for T when it is good in the p-mean for the operator T induced by 7. As usual, n is called

good in the p-mean if it is good in the p-mean for all MPTs.

A family F = {F,}n,>0 of functions in L, is called a T-superadditive process if
Foim > F, + T"F,, ae. for all n,m > 0 (Fy = 0), where T is a positive linear operator
on L,. If the reverse inequality holds, it is called T-subadditive, and if the equality holds,
ie. F, = Z?:_ol T'Fy, it is called T-additive. A nonnegative T-superadditive process F is
called bounded if vy = sup,,>; % [ Fodp < oo. It is well known that, if F C LT is bounded,
then lim,, o % f F.du = ’y;.

In order to define the “averages” of a T-superadditive process F' = {F,} along a
general sequence n, it will be convenient to view F' as a collection of functions {fi} in L,
with partial sums F,, = fo+ f1 + ... + fn_1 satisfying the condition

TanSFm—i—n_Fmv manO

Following [JO], in the sequel we will use the generalized notation for sequences. Namely,
a sequence n will be a family of integers n = {n(k,[)} such that
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Tb(k,ll) < Tb(k,lz) if 11 <o, and Tb(kl,l) < n(kz,l) if k1 <ksy.

Given a sequence n = {n(k,[)}, we define the average of a superadditive process F' along
nas, for K >1and L > 1,

L-1

fn(K,j)(aj) .

SIE

(*)

<.
I
(=)

(When n = {ny}, the averages of F along n will be + Zk 0 ' fn..) Asequence n = {n(k,1)}
is called good in the p-mean for T-superadditive processes if, for every T-superadditive
process F', limg 1 oo T ZJ 0 fn(KJ) exists as a double limit in L,-norm.

2. The Apparatus and the Main Theorem

The problem of determining when a sequence n is good in the mean for MPTs was
settled by Rosenblatt [R, Theorem 1] :

(i) For 1 <p < oo, a sequence n is good in the p-mean for invertible MPTs if and only
if Img N0 77 ZN L e2min(KiB for all B € [0,1).

(ii) When 7 is a MPT, %Zfz_ol f(rEDg) converges in Ly,-norm Vf € L,, 1<p < oo,
if and only if it converges in Lo-norm for all f € Ls.

Naturally, one asks if the existence of the limit in (i) would imply that the sequence is good
in the p-mean for some operators on L,,. In this section, we will show that if n is good in the
p-mean for (super)additive processes relative to MPTs, then it is good in the p-mean for
(super)additive processes relative to positive L,-contractions, when 1 < p < oo, or relative
to positive Dunford-Schwartz operators on L;. The main tool in obtaining this result is
the apparatus below. Parts of the construction of the apparatus are standard, therefore
we will only give an outline of it here (adapted to the superadditive setting). The reader
is referred to [JO, J] for the details. In [JO], due to the intended purpose there, only the
case 1 < p < oo was studied. Clearly, the complications with p = 1 in [JO] are due to
Chacon’s counterexample for a.e. convergence for positive linear isometries in L. We are

mainly interested in norm convergence, hence it is natural to consider also the case p = 1.

The Apparatus. Let T and S be linear operators induced by the nonsingular invertible
point transformations 7 and o on X and Y, respectively, with w and 2z as the associated
weight functions. (If o is measure preserving, z = 1.) Then

" (f)(z) = f(T"x)wn(x)  and  S"(f)(x) = f(o"w)zn(z), n=1.
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where w, = w(wor) ... (wor" 1) and z, = 2(z0o7) ... (207" 1), Assume also that

T is aperiodic. Fix K > 1 and L > 1, and choose § > 0 such that

L—-1

1 .
/E Iz Y fagplPdu<e i p(E) <.
§=0

Let m € Z* such that % < g and n(K, L) < m. Construct a Rohlin-Kakutani tower
{Ak}kmjl for 7 with error less than £, and /L(U}ﬁmg_mﬂAk) < 2. Similarly, construct a
Rohlin-Kakutani tower {Bk}};ﬁl for o with error less than . Pick a constant 3 such that
(A1) = Pr(By). Let ¢ : Ay — By be an invertible MPT and define H : L, (A1) — L,(B)
by H(f)(y) = f(¢~'y)BYP, 1 < p < oo, for supp(f) C A;. Then [p, [Hf(y)|Pdv =
Ja, 1f(x)Pdp. Let A= U Ay, and B = UJZ, By, and then extend H : L,(A) — L,(B)

as
wy (77RO Ly)

zi (0™ ky)
where ®: A — B is the extension of ¢ defined by ®(z) = (c*¢77F)(z), 1 <k < m?,
for z € Aj. Consequently, if supp(f) C A, then supp(H f) C B, and

M) [ 1= [ yisea

;From the construction, it follows that, for f € L1 N Loo, |[Hf||L. By = Ifllz(a)

H(f)(y)=f(@ 'y) B,

Lemma 2.1 Let the operators T, S, and H be as above. If {F,} C Ly(X) is a T-
superadditive process, then {HF,} C L,(Y) is an S-superadditive process.

Proof. It is enough to show that (HF,,)(c™y)zm(y) = H[(F,, o 7™)wy,](y). Now,

wk(T_kqfly)
2k (o~ ky)
w7 E D omy)

zi (o Fy)

H((Fy 0 7™)wm](y) = [(Fa o 7™) (@7 y)Jwm (27 1y) pHy

Bl/p_

= [(Fu(@7 0™ y) wn (177 10 ™y)

—k—m(b—l —k—m(b—l

Since Wiy (T o™Y) = Wy (17O o™y )wy (T a™y), and

Zhpm (0T 0My) = 2 (y)zk(0 " y), we have

w m T—k—m@—la.my .
kel e )8V = HE (™) 2m(y)

H{(Fy o 7™ Ywm)(y) = Fa (27 0™y) = s

proving the desired equality. I
Now we are ready to obtain the main result.
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Theorem 2.2 Let T be a positive Ly,-contraction, 1 < p < oo, or a positive Dunford-
Schwartz operator on Ly. If n = {n(k,1)} is a sequence of positive integers which is good
in the p-mean for a class of superadditive processes relative to MPTs, then it is good in

the p-mean for T -superadditive processes of the same class.

Proof. First we will prove the theorem when T is a positive invertible linear isome-
try of L,(X), 1 < p < oo. Let T be induced by an aperiodic invertible nonsingular
transformation 7, and let (Y,Y’,v,0) be an invertible measure preserving system. Fix
K, L, and consider the apparatus above (where S is the isometry induced by o). Let
x € Ay N supp(1 Zf:_ol fnix j)). If y = @z, then

= 1 Lt
(2) I Z Hfnxj(y) = H[f Z fa(x gy (@)]-
j=0 j=0

Now, for any two pairs K, L and K', L', let §; and d> be chosen such that

1 L—1 p 1 L'—1 p
|_ E fn ,'Pdﬂ<<“ and !/‘%_ fn x'PdM<i—
/E I prd (K,j5) 92 o' L' ;:0: (K',j5) 9

if u(F) < 1 and u(FE) < 02, respectively, as in the apparatus. Let § = min{dq, do}. Pick
m so that % < g and n(K,L),n(K',L") < m, and construct the mapping H as in the
apparatus. Consequently, (2) holds for both Ef;ol fn(k,j) and 25;61 fn(x' ;) Then

1 L—1 1 L'-1
I£ D2 Fatciy = 7 D Far I, x)
j=0 7=0

1 L-1 1 L'—1 1 L-1 1 L'—1
:/ 72 Faki) — 75 D fn(K',j)|de+/ 7 2 fawciy = 77 D Tuc P
A . . Ac R N
7=0 7=0 7=0 7=0
1 L-1 1 L'—1
< /A |Z ]z:; Fn(r,j) — 7 ]z:; fn(x j)|Pdp + € by the choice of 4,

1 L-1 1 L'—1
- /B HIL Y fuieg) = 37 22 Faaeg)lPdv e by (1),
Jj=0 j=0

L-1 L'—1
1 1
< ||E Z an(K,J) - ﬁ Z an(K',J)Hip(Y) +e€ by (2)
Jj=0 j=0

L—-1

Now, first let e — 0, and then using the fact that > im0

by hypothesis (since S is induced by measure preserving transformation, and H f,, is S-

H fn(x,j) 1s Cauchy in the norm

superadditive by Lemma 2.1), we obtain that the averages of the original T-superadditive
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process is Cauchy in the norm. This proves the assertion when 7 is aperiodic. If 7 is
periodic with period d, the same argument applies with minor modifications after replacing
the sets A; by disjoint sets A;, As, ... Ay, where if x € Ay, then 7%z € A, k =
1,2, ...d, and 7"lz =z .

Next, let T be a positive L,-contraction. By Akcoglu-Sucheston dilation theorem [AS]
there exists another (larger) L,-space, say L, and a positive invertible isometry @ : L — L
sothat DT™ = EQ"D for n > 0, where D : L,(X) — L is a positive isometric imbedding
of L,(X) into L and E : L — L is a positive projection. Here, the process {Dfi} is
(Q)-superadditive in D(L,), and, for any sequence n,

1 L-1 1 L-1
(3) D[+ > fai) = B+ > D)
7=0 J=0

By the first part, n is good in the p-mean for superadditive processes relative to positive
invertible isometries, thus it is good in the p-mean for @, and by (3), it is good in the
p-mean for T'.

When p = 1, the same argument in the first part implies that if n is good in
the 1-mean for superadditive processes relative to MPTs, then it is good in the 1-mean
for superadditive processes relative to positive invertible isometries which are also -
contractions. Again, we use Akcoglu-Sucheston dilation theorem (for p = 1) to obtain (3).
Since E and D preserve Lo,-norm for f € Li N Ly, (see also [A]), the assertion follows
from the same argument as in the case 1 < p < 0. 1

Not every sequence which is good in the p-mean is good in the p-mean for superadditive
processes (see the example below). However, the method of proof of Theorem 2.2, adapted
to the additive processes, also gives:

Theorem 2.3 Let T be a positive L,-contraction, 1 < p < oo, or a positive Dunford-
Schwartz operator on Ly. If n = {n(k,1)} is a sequence of positive integers which is good

in the p-mean, then it is good in the p-mean for T.

Remark. If n is good in the mean for invertible isometries, then an argument similar to
that of Theorem 2.2 above shows that it is also good in the p-mean for T-additive processes
when T is a positively dominated operator on L,, 1 < p < 0o, or is a (not neccesarily
positive) Dunford-Schwartz operator, or is a power bounded Lamperti operator.

Combining Theorem 2.3 and the theorem of Rosenblatt [R], if we define the Fourier
coefficent function C(B) of 1, by C(8) = limg n o0 & SN 27n(K)8 whenever the
limit exists for all 8 € [0, 1), we obtain:



Theorem 2.4 If n is a sequence whose Fourier coefficent function C(B) exists for all
B € [0,1), then it is good in the p-mean for all positively dominated L,-contractions,

1 < p < o0, or Dunford-Schwartz operators on L.

Recall that the result (i) of Rosenblatt provides a criterion for determining the se-
quences that are good in the 2-mean for additive processes (relative to MPTs). There
is, yet, no such criteria known for superadditive processes. We will show in the following
section that for a certain family of sequences (B-sequences) if the process F' has some
additional properties, or if the averages of F' along subsequences are defined differently,
one can say more about the convergence in the mean. Indeed, the following shows that
the question of which sequences n are good in the p-mean for superadditive processes is
very delicate (which will be discussed in a separate article) .

Example. Let f,, = (=1)", n=0, 1, 2, ... Clearly F' = {F,} is a bounded subadditive
process (on a one point space). Now, we will define, inductively, a sequence {ng} such that
limy & ST, fails to exist. For, let ng =0, ny =1, ng =2, ng =4, ng =5, ng =7,

and
nzigyj, 0 <7 < 3'2, are the next 3'2 even numbers after ngis_;
n3igyj, 0<j < 3'2, are the next 32 odd numbers after ngis_;.

Then & Yo ) frx = 0 if N =372, and is 1 if N = 3°4. Hence, liminfy & S0y fax = 0,
. 1 N-—1 1

whereas limsupy x> 1—o fn, = 5-

Remarks. 1. The Fourier coefficent function of this sequence exists for all 8 € [0,1),

hence, by Theorem 2.4, it is good in the p-mean (for additive processes).

2. For the process F' in the example above, the sequence of even (or odd) integers, sequence
of squares, sequence of primes, and block sequences (i.e. sequences of the form n = UBy,
where By = {ny + i}i’;o, and ng T, Ix T with ng + I < ngy1) are good in the p-mean.

3. The Superadditive Case Revised

In [F] it was shown that if n is a B-sequence (see definition below), then the averages
of bounded superadditive processes relative to MPTs along n (called moving averages) is
good in the 1-mean as well as a.e. However, the definition of moving averages used there is
different than (*). In this section we will show in Proposition 3.1 that if the definition (*)
is used, then B-sequences and block sequences need not be good in the p-mean (nor a.e.)
for bounded superadditive processes. We emphasize that in these two cases the additive
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averages do converge. For these subsequences we study two different solutions, the first
one is to consider a more restrictive class of superadditive processes (the Chacon processes)
and use the definition (*), and the second solution is to redefine the superadditive averages
for these subsequences using the definition in [F]. In both cases, we will obtain that B-
sequences (and block sequences), which are good in the 1-mean for additive processes, are
good in the 1-mean for bounded superadditive processes. In the sequel, we only concentrate
in B-sequences given that the case of block sequences is similar. We will also concentrate
only on the case p = 1.

A sequence n = {(vy,,7,)}°2, in ZXxZ such that r, > 0 for all n is called a B-sequence
if there is a constant satisfying

[{k:3n, k+[va, ve +1n) C I} < BT
for every interval I C Z, where |S| denotes the cardinality of a set S C Z. Notice that, if
l=1(j)=rj, k==Fk(y)=uwv;,and n(k,i) =Fk(j) + ¢, then B-sequences can be viewed in

terms of the general definition of subsequences. We observe that the above definition of
superadditive averages along a subsequence can be written as follows:

(4) _(Fvn~|—rn _Fvn)a

Proposition 3.1 Let {(vk,71)}32, be a sequence of integers satisfying
oo
T 1
> <7
P Vg + Tk 4

where {vy,} and {r,} are strictly increasing sequence of positive integers, then there exists

a nonnegative, bounded superadditive process {F,}°2, (on a one-point measure space) such
that (4) diverges.

Proof. Let Q@ = {wp}, u(wp) = 1. We will define a new sequence

{ (ks 1) Yozn C {(vk, r) }R2s

as follows: let (v],r]) = (v1,71), and
! !/ !/ [
vy = Vp,, Upn, such that v,, >v]+r] and ry = Tn,, and
' vy 47} 1 /
_ 2 TTo 1 _
Ts = Tps , Tng such that s <3 and V3 = Up, -



In general
! / !/ [ —
Vop = Up,, Where vy, > vy, | + 715, 4 and 1o, =1y, for k=1,2, ...

! !
VoptTog

nog41

/ _ 1 / _ —
r2k;-|_1 - Tn2k+1 Where S § alnd U2k+1 — vn2k+1 fOI‘ k — 17 2, c e e .

Define X% = (X7%)% | where

2k { 1 if j € [nvyy, + (n — 1)1y, nvg, + nry,) for some n > 1
j pu—

0 otherwise,

for k=1,2, ...,and X?**1 = (0);=1, .. fork=0,1,2, ... Moreover we also define
00 n—1
V,=) X, Y9=0 and F,=)Y,, F=0.
1=1 p=1

A picture for the above definitions is as follows: X is the infinitely long i*® row, and Y,
is the sum of all the elements in the p*" column.

Because v, — oo we see that Fj,, < oo for all n > 1. We first check that sup %Fn < % .
n>1

To prove this, notice that if we fix n > 1 then there exists vy ~satisfying v;, < n and
vy 41 > 1. For a given i, 1 < i < kj,, we write

(5) n = 0i(v; +7j) + i
o0 ’

where 0; is an integer and 0 < ; < v; + r; we notice that the condition 221 U,T—H, <1
=

implies:

4 v;
6 > ’ > 1.
) (i)

Hence using (5), (6) and the fact that S,, is the sum of the ones in the first n columns we
estimate as follows: It is enough to consider the case 7; > v] for each i :

k k
1 1 «— 1<~4 vl
5Eﬁﬁziwﬁﬁ”9§ﬁ_5ﬂ(@+wiﬂ>
i=1 i=1 ¢ 4
k k
4 . 4n T 1
< s T - E ¢ < =
T 3n i < vl + ré) 3n — (vi4rl) 3



The next property we verify is (superadditivity) F,, + Fy, < Fppqen  VYm,n > 0 . This
follows from the inequality

f
L

+

Z m,n > 0,

p=m

=3
I
=

which in turn follows from Y7~ ! X Zm+n 2 X}, Vi > 1. This last inequality follows
from the definition given for X Jzk So superaddltlwty is proved.

. From the definitons it follows easily that

(F”ék +rop F”ék)

(7) , > 1 VE=1,2, ...
"ok
We finally claim
(For g —Fp ) 1
(8) 2kt1 T 2/k+1 2l < 2 k=0,1,2,
Tok+1 3

To check (8) take £ > 0. By the construction, only the first 2k rows contribute with ones

to the difference (Fyy  4py, — Fyy, ). Write
(9) Topr1 = G2 (Vg +15;) + 72
for j =1, ... ,p; g an integer and 0 < 72; < (vy; + ry;). We notice that by the
definitions: . .
1 _ vl +7) Vg + Ty _
3 Tok+1 Tok+1
1, b rh.
(10) _( : ) > : J = 17 ak
3 vy + 1y, okt

Therefore, using (9) and (10) it follows from the definitions that

Tok+1 =1 T2k+1 =1 T2k+1 3 Uzg + TZ]

7"2

j 1
<.
(vg; +73;) 3

(Fur . 4 —Fy ) b ((1237“2 +15;) i Tz ey
2k+1 2,k+1 2htl” Z 429725 T 7257 Z J J

1

3

k
vl 1k
2k+1725
<> 12
= T2k+1(U23+T23)

Combining (7) and (8) we conclude that lim —-(F,r 1, — F,) does not exist. i

n—oo ' n
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Remarks. 1. We notice that a subsequence of a B-sequence is also a B-sequence. For
instance, consider the example vy = (k + 1)!, rp = k! . Hence, r /v, — 0 and then taking

o0

an appropriate subsequence the condition ) vkifrk
k=1

< % used in the proposition above can

be satisfied for some B-sequence.

2. The example above may be adapted to give a counterexample for the case of averages
of bounded superadditive processes along Block sequences.

The counterexample constructed in Proposition 3.1 raises the question: Is there a class
of one-parameter superadditive processes for which % (Fop4ry (w) — Fy, (w)) converges in
the mean (and possibly pointwise) as 7, — oo, when F is in that class? Proposition 3.2
below proves that the so called Chacon’s admissible processes give an affirmative answer
to this question.

Definition. A collection { fo, f1, . . . } of functions in L, (X, X, ) is said to be a bounded
Chacon admissible process with respect to a positive linear contraction S if:

Sfi < fixa 1 >0

n—1
supl/Fn<oo, where Fn:Zfi, n>1.
n>1M Jx i—0

It follows that Fy+S¥F, < Fryn, k,n >0 (take Fy = 0). Therefore, a bounded Chacon
admissible process is a bounded superadditive process. We notice that the superadditive
process constructed in Proposition 3.1 is not a Chacon process (neither is the process in
the example following Theorem 2.4).

For the purpose of the next proposition we will assume that S is an operator on L1,
induced by an isomorphism on the base Lebesgue space. It is known that in this case §
admits a weak type (1,1) maximal inequality along B-sequences for additive processes (in
fact this is true for an arbitrary MPT [F]).

Proposition 3.2 Let S be an operator as above. Assume that {fo, f1, . . . }, a col-
lection of L1(X,X%,n), is a bounded Chacon admissible process with respect to S. If
F, = Z?:_ol fi, n>1, and {(v,,r,)}52, is a B-sequence with r, — oo , then

(P, 4, (w) = Fy (w))

T'n

converges a.e. and in the mean as n — oo .

n—1

Proof. Noticing that Y  S7f, < F,,, we can assume that f; > 0, 7> 0, without loss of
i=0

generality. For convenience define P; = f; — Sf;_1, ¢ > 1, also we set Py = fy. By using
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the fact that the process is bounded it can be proved that
(11) lim fr < oc.
k—o00

To obtain this inequality we compute as as follows (P; > 0):

[ 5= 75 /sfk_riIZ/fkﬂ

(k+7r+1) 1
Fi_, F Fi_,
(T+1 (/ k4+r+1 — k> 11 <(k+r+1)/ k++1>

S(l<:+7"+1 sup - /F
(r+1) p>1n

Taking 7 — oo, this implies that lim [ fx <sup [ F, .
k—o0 n>1 n

For a given k > 1 define
. S"k fi(w) for n >k
gn(w) =
fn(w) for 0<n <k
Hence it follows that
0if 0<n<k
12 w(w) — gF(w) ={ & :
(12) Ju(w) = gn(w) ZSm_’PkH(w) for n >k, where m=n—k.
i=1

Define M;(f —g*) =31 +1:l_1 fn — g¥. By making use of (12) we estimate that

Vi +’I”i —1 V;

Mi(f =g < 303 SR (w)

j=v; r=k+1

q

Also define by 4(w) = >, SyP.(w) and bg(w) = lim by 4(w) . By an application of
r=k+1 q—oo0

the Lebesgue monotone convergence theorem and equation (11) we obtain:

(13) / bo(w)dp(w) = Tim [ bpg(w)dpu(w /P < Jlim /fk < .
X o X r=k-+1
Because by, 4 T b and by, € Ly we conclude Sjbk,q 1 S7by. Therefore (13) implies

v;+r;—1
(14) Mi(f =g < ). Sb.

Jj=v;
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As usual, define

1 Un+rn—1 Un+rn—1

f(w) = limsup — Z fi(w) fz(w)zlinrgicgfa Z fi(w).

n—oco I'm ! :
J=VUn J=VUn

For an arbitrary o > 0 define E = {w | f!(w) — f*(w) > @}, then to finish the proof we
need to show that p(F)=0. For k > 1 set

Up+rn—1 Up+rn—1

Gilw) = tim — Y (ST f)(w) = lim =Y ),

n—oo Ty, : ;
J=Un J=Vn

where the last equality is obvious for the cases in which v,, = o0 or v, < M, Vn >1,
and it also follows in the other case by an application of Theorem 3.3 in [F] (see the remark
following Theorem 3.3 in [F]). Therefore

E={w| [(/'(w) - G(w)) - (f*(w) = Gi(w))] > o}

|

1 o'
c{wl (s 2o g9) >
n>1"Tn 2
111n+7“n—1 . o
Cwl| (sup— STb(w)) > = p,
(o 3 St > ;

where we used (14) to obtain the last inclusion. By hypothesis S admits a maximal
inequality along the B-sequence for the additive process {S7 b};";o. Hence we obtain:

u(B) < %2 [ bwiduw) = 22 S [|p] <,

(6]
r=k+1

where we used (12). Then taking k& — oo gives u(E) = 0. Now we show how this a.e
result implies convergence in L;. Given the hypothesis on the operator S and the fact
that the sequence {fx} is a bounded Chacon processes it follows that Gj < Gi41 and
[ G = [ fx, where the last equality follows from the identification of the limit result given
in [F]. Therefore Lebesgue monotone convergence theorem guarantees the existence of the
Ly-limit G = Ly — limg_, o0 G

The proof will be finished by showing that limy, e || 2= (Fy, 45 — Fon) — Gooll1 = 0.
Given € > 0, use equation (11) to find K such that [ f, — [ fin < § for all K < m < n and
|Goo — G|l < § for all k > K. It has been shown in [F] that L; convergence holds for

Vn+r,—1 .
additive processes along B-sequences, therefore lim, o [|Gx — = Y. (S77Ff)|1 = 0.

Tn .
J=Un
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Hence

Up+rn—1

. 1 1 .
im || —(Fy,4r, — Fo,) — Gooll1 < ||T,_|:(F'Un+7"n_Fvn)_ Z (87 kfk)]Hl

n—oo T,

J=vn
1 Vn+r,—1
HGr—— D (ST )l + [1Gk — Golln
=
€
S/fvn—i—rn fk+§§fl

To extend the mean result of Proposition 3.2 to the operator case we need a version
of Theorem 2.2 for Chacon processes. First notice that Proposition 3.2 implies that the
averages %(Fvﬁ_rn — F,,), converges in the mean, where F' is any Chacon process with
respect to some operator S (S as described above). To obtain this result for an arbitrary
positive L; contraction T we can use the proof of Theorem 2.2 as HF is S — C'hacon
admissible, where the transformation H is as in Theorem 2.2. But this is easily checked
along the lines of Lemma 2.1. With these remarks we obtain:

Corollary 3.3 Let {F,}2 be a bounded Chacon’s admissible process with respect to T,
where T is a positive Dunford-Schwartz operator on Ly. If {(vg,ri)}32, is a B-sequence

with rp, — oo, then

(ka-i-?“k (w) — ka (w))

converges in the mean as &k — 00 .

The second solution to the problem of defining averages of superadditive processes is
actually to define them as follows. The “averages” of a T-superadditive process F' = {F},}
along a B-sequence n = {(v,,r,)} can also be defined by

1
(%) A

T'n
The ordinary (nonmoving) averages correspond to the case where v, = 0 for all n.
Observe that, the averages of F along n = {(v,,, r,)} using the definition (*) corresponds to
% [Fy,, +r, —Fy,]. Both definitions are equivalent in the additive case. The same apparatus
used in the proof of Theorem 2.2 leads to the same conclusion when the averages are
defined by (**). For, since n = {(v,,r,)} is good in the 1-mean for bounded superadditive
processes relative to MPTs in this case [F], it is enough to prove that if T and S are as in

Theorem 2.2 and n is good in the 1-mean for bounded superadditive processes relative to

14



MPTs, then it is also good for bounded T-superadditive processes. That is why, we only
state this result (without proof):

Theorem 3.4 Let {F,}>2, be a bounded T-superadditive process, where T is a positive

Dunford-Schwartz operator on Li. If n = {(vg, i)}, is a B-sequence with r, — oo.

Then .
— T F,, converges in the mean as k — oo .

Tk
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